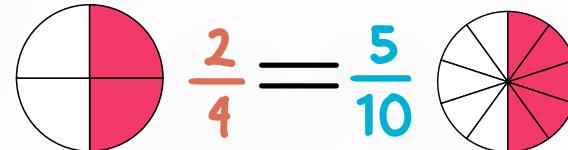


STEP-BY-STEP OPERATIONS

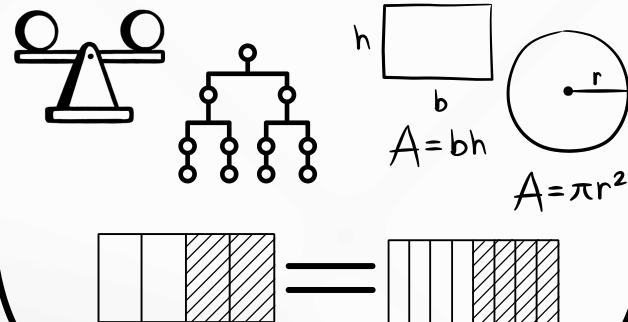
Students learn key relationships that are the building blocks of algebra and learn how to perform operations in a logical, step-by-step manner.

GRAPHS ARE USED TO REPRESENT AND COMPARE DATA



DIVISIBILITY AND MULTIPLES

Connecting multiplication and division fact families is a key idea in grades 6 and 7.


Multiplication Facts	Related Division Facts
$4 \times \underline{3} = 12$	$12 \div 4 = \underline{3}$
$3 \times \underline{4} = 12$	$12 \div 3 = \underline{4}$
$2 \times \underline{6} = 12$	$12 \div 2 = \underline{6}$
$1 \times \underline{12} = 12$	$12 \div 1 = \underline{12}$
$0 \times \underline{not possible} = 12$	$12 \div 0 = \underline{not possible}$

PROPORTIONS EQUATE FRACTIONS

EQUALITY (BALANCING EQUATIONS)

Equations can be modelled using scales, mobiles and familiar 2D shapes

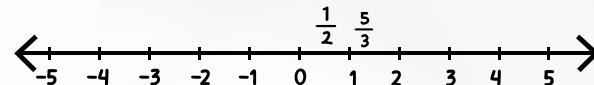

CAMPBELL RIVER School District 72

OPERATIONAL FLUENCY $+$ $-$ \times \div \equiv GRADE 6/7

This brochure highlights some of the methods for developing computational fluency in grade 6 and 7.

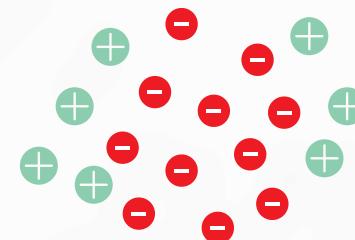
For more information, visit
<https://www.sd72.bc.ca/72learninghub/elementary-1>

ESTIMATION BEFORE CALCULATION


Estimation is used before calculation to judge if a solution is reasonable.

Example 1: Place the decimal in a sum or difference using front-end estimation (e.g., for $4.5 + 0.73 + 256.458$, think $4 + 256$, so the sum is greater than 260).

Example 2: Place the decimal in a product using front-end estimation (e.g., for $\$12.33 \times 2.4$, think $\$12 \times 2$, so the product is greater than $\$24$).


Example 3: Place the decimal in a quotient using front-end estimation (e.g., for $51.50 \text{ m} \div 2.1$, think $50 \text{ m} \div 2$, so the quotient is approximately 25 m)

INTEGERS AND FRACTIONS ON A NUMBER LINE

Numbers are usually arranged from smallest to biggest from left to right.

Integers are sometimes modelled as charged particles (this example shows $-11 + 7$)

INTEGER OPERATIONS RULES

$$+ \times - = -$$

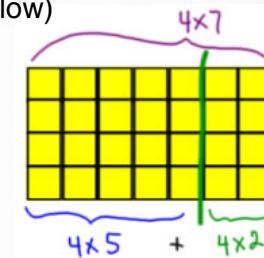
$$+ \times + = +$$

$$- \times - = +$$

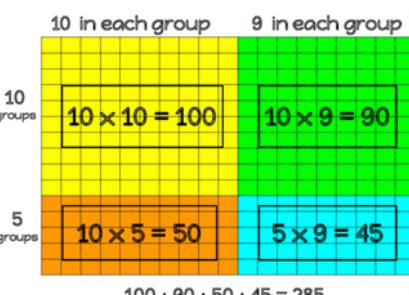
$$+ \div - = -$$

$$+ \div + = +$$

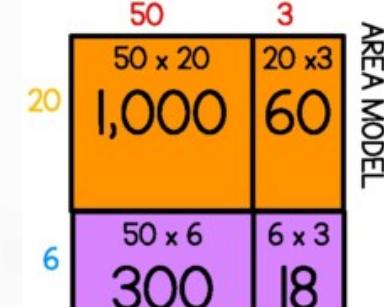
$$- \div - = +$$


COMPARING FRACTIONS

$$\frac{1}{6} < \frac{1}{2} < \frac{8}{10} < \frac{8}{5}$$


MULTIPLICATION: AREA / ARRAY

The area / array model for multiplication connects to the distributive property and can be used to solve multi-digit multiplication problems. (See the 3 examples below)


4×7

15×19

26×53

Add together all products:
 $1,000 + 60 + 300 + 18 = 1,378$