Foundational Numeracy & Operational Fluency | Name: | |-------| |-------| Reasoning and Analyzing: Demonstrate and apply mental math strategies **Understanding and Solving**: Develop, demonstrate, and apply mathematical understanding through play, inquiry, and problem solving | Foundational
Numeracy (K-2) | (K) | (1) | (2) | (2+) | |---|---|---|--|--| | Understanding
Counting | Counts 1:1
(touch and talk) | Counting On, Skip
Counting, Choral
Counting | Counts forward and backward in sequence (+/- 1, +/- 2, 5, 10) | Selects and uses various counting strategies fluently | | Understanding & Communicating Recognize / Subitize | Decodes values on 6-
sided dice and uses a
10-frame | Correctly reads a D10
or D20 die, 10-frame,
calendar, Rekenrek,
and 100 Grid | Uses a 100 Grid, Base-
10 models, and dice to
explore & investigate
place value | Writes number stories that include grouping / subitizing | | Analyzing Compare / Order | Can order values
when concrete
models are given | Can compare and order values less than 20 | Compares and orders
values up to 100 | Compares values beyond or between other values (2.5 is less than 3, but more than 2) | | Reasoning Compose / Combine | Making Ten
+ = 10 | +/- 0, 1, 2
Doubles
10 + | Near doubles (double
+/- 1, 2)
Compensation
(borrowing) | Manipulates and combines multiple strategies effectively | | Representing* Modeling Numbers | Encodes/Decodes
concrete visual
models of numbers
(1:1 models) | Connects number & equivalent concrete visual models (matching equivalent values) | Creates number sequences & patterns (increasing and decreasing) | Interprets and extends number patterns and models | ^{*}Suggested Resources: Tiny Dots card game, Interactive 100s Maze KG: Numbers to 10 1: Numbers to 20 (recommend 31 to connect with calendar and weather) 2: Numbers to 100 (connecting to money concepts – focus on whole dollars ### **Operational Fluency Trajectory (Grade 3-5)** | Operational
Fluency (3-5) | (3) | (4) | (5) | Z. | |--|---|--|--|---| | Understanding Additive (+/-) Strategies | Doubles, near
doubles, +/- 0, 10 ,
100, 1000
Model addition w/
base 10 blocks | Combos of 1, 10,
100, 1000, ex. adding
bills and coins (parts
and wholes) | Compensation
(regroup / borrow)
adding and subtract
#s up to 6 digits,
using place value | Selects and uses
various additive
strategies fluently | | Understanding Multiplicative (x/÷) Strategies | Multiples of 2, 10, 5
20, 50, 100 | Doubling, Multiples
of 3, 6, 9, 4 | Knows multiples of 7, 8, 11 | Squares, Near
squares | | Reasoning Compares number families | Even, Odd, x10, x5 Compare value of digits according to place value | Identify multiples of
3, 6, 9, 4
Finds patterns in
groups of facts | Determines common multiples compares prime and composite #s | Determines common factors | | Solving Compose / Decompose / Partitive Reasoning | Understands
multiplication as
repeated addition | Performs
multiplication by
counting by groups
Decompose number
into powers of 10 | Uses properties of composite and prime numbers | Decomposes
numbers flexibly &
fluently in new
contexts | | Representing Modeling whole numbers* and unit fractions | Encodes/Decodes
concrete visual
models of numbers | Connects shape & space with number concepts (arrays, perimeter & area) | Creates visual
models of whole and
fractional numbers
(pie and bar models) | Interprets and extends models to include "improper fractions" and mixed numbers | ^{*}Recommended Tool: animated prime factorisation visualization (moving dots) Grade 3: Place value up to 1 000s (2-D models, arrays), benchmark fractions Grade 4: to 10 000s, modular models (clocks), decimals (hundredths), Canadian currency (all) Grade 5: to 1 000 000s, decimals (thousandths), elapsed time, metric conversion (ex. mg to g to kg) # **Operational Fluency Trajectory (Grade 5-7)** | Operational
Fluency (5-7) | (5) | (6) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | |---|---|---|--|---| | Understanding Additive (+/-) Strategies | +/- 0, 1,2 Doubles, Making 10, Near Doubles (regroup / borrow) Add and subtract using place value | Selects and uses
various additive
strategies including
standard algorithm | Applies additive strategies to decimals, fractions and mixed numbers | Uses additive strategies
to work with decimals,
fractions and percents
in new contexts | | Understanding Multiplicative (x / ÷) Strategies | Multiples of 2, 10, 5 Doubling/Halving, Multiples of 3, 6, 9, 4 | Multiples of 7, 8, 11 Applies Multiplication algorithms | Squares, Near
squares in
multiplication table
Uses division
algorithm | Flexibly and fluently uses multiplication and division strategies to solve novel problems | | Solving
Recognize
number
families | Identify numbers as
Even, Odd, x10, x5
multiples of 3, 6, 9, 4 | Uses knowledge of
multiples to
determine common
multiples | Applies common
multiples to simplify
and solve problems
involving fractions | Solve various problems involving fractions with unlike denominators | | Reasoning Proportions and part: whole relationships | Understands
multiplication as
grouping | Compares groups using ratios or proportions | Solves problems
requiring
proportional
reasoning | Distinguishes between rates, ratios and proportions and uses each appropriately depending on the context | | Representing
Modeling
Number* | Plots values on a number line | Represents / models equivalent fractions and percents | Locates points within a cartesian plane using coordinates (x,y) | Models proportional
relationships using a
double number line or a
ratio table | | Communicating Using words and symbols | Uses > < = ≈ to
compare values | Uses correct
notation and
vocabulary for basic
operations, equality,
fractions, ratios, and
percents | Solutions are detailed and organized, including symbols, words, and notations where needed | Accurately and cleanly communicates reasoning in various contexts. May include inequality (\neq), arrows, columns, etc. | ### Algebraic Reasoning (Symbolic Logic) Trajectory (Gr 7-9) Reasoning and Analyzing: Use reasoning and logic to explore, analyze, and apply mathematical ideas **Understanding and Solving**: Apply **multiple strategies** to solve problems in both **abstract** <u>and</u> **contextualized** situations ### **Communicating and Representing** | Algebraic
Reasoning | (7) | (8) | (9) | (10+) | |--|--|--|---|---| | Understanding | Substitutes values into single variable expressions | Substitutes into and evaluates expressions with more than one variable | Simplifies and evaluates expressions using exponents and polynomials | Converts concrete models into variable expressions and equations | | Solving | Solves 1-step and whole number equations independently | Solves 2-step
equations
independently | Solves multi-step
equations and isolates
variables in common
formulas | Writes and solves equations based on novel contexts or multi-step problems | | Reasoning (Logic Strategies) | Relies on strategic guessing | Uses inverse operations and logic strategies | Uses both algebraic and concrete models to solve equations | Manipulates equations and combines multiple strategies effectively | | Communicating | Encodes / identifies solution using the form: variable = "Work" is shown but does not use standard notation | Shows / Identifies at
least one intermediate
step between the
problem and the
solution | Communicates
multiple algebraic
steps in a logical and
conventional manner | Algebraic notation is complete, organized, and communicates an efficient way to solve problems May include limits, estimates, and/or nonpermissible values | | Representing Modeling expressions and equations | Encodes/Decodes
concrete visual
models of
expressions | Connects equations
and equivalent
concrete visual models
(Mobiles) | Creates visual models of linear equations (Graphing) $y = ax$ $y = ax + b$ | Interprets visual models of equations (intercepts, slope, interpolation, extrapolation) | - Grade 7: two-step equations with whole-number coefficients, constants, and solutions - Grade 8: two-step equations with integer coefficients, constants, and solutions - Grade 9: <u>multi-step</u> one-variable linear equations # Fact Fluency Trajectory (K-9) | Name: | | |-------|--| | | | Date : _____ | Fluency Stage | Addition* | Subtraction | Multiplication | Division (Factoring) | |---------------|---|---|---|---| | | Count On, 1:1,
using tools | Count Back From,
1:1, using tools | Skip Counting,
May use fingers | Guess and revise strategy Ex. Dividing a number by any number smaller than itself, chosen randomly. | | | Making Ten | Think of related addition fact | Knows
Benchmarks (x1,
x10, x5, x2) | Strategic elimination
(use a list of prime
numbers 2, 3, 5, 7, and
eliminate one at a time) | | (L) | Compensation
(Regrouping)
Ex. 18 + 7
= 18 + (2 + 5)
= (18 +2) + 5
= 25 | Take from 10
(compensation)
Ex. 21-8
=21-10+2
=11+2
=13 | Adds a group onto
a benchmark
multiple*
6 x 9
=5 x 9 +9
= 45+9 | Recognizes fact families
(remembers patterns in
products of 2,5,10) | | J. | Doubles and Near-
Doubles | Subtract in parts (partition) Ex. 21-8 =21-1-7 | Subtract a group
from a benchmark
multiple*
8 x 9
=8 x 10 - 8
= 80-8
= 72 | Divides in parts
(according to place value
or benchmarks)
$85 \div 5$
= $(40 \div 5) + (40 \div 5) + (5 \div 5)$
= $8 + 8 + 1$
= 17 | | | Rounds one
addend up and
then uses
subtraction
28+17
=28+20-3
=48-3 | Same distance = same difference 200-18 = 199-17 (reduce both by 1) 199 - 17 182 | Uses squares or
other known facts
Ex. 7 x 8
= 7 x 7 + 7
= 49 + 7
= 56 | Thinks of related multiplication fact (connects to inverse operation) Ex. 60 ÷ 5 = 12 because 12 x 5 = 60 | ^{*}Benchmark sums: 10s, doubles ^{*}Benchmark multiples: x 1, 2, 5, 10 then 2, 4, 8 then 3, 6, 9 then 7, 11, 12, 13 # Fractions/Decimals/Percents Fluency Trajectory | Name: | | |-------|--| | | | Date : _____ | Fluency Stage | Addition | Subtraction | Multiplication | Division | |---|---|---|---|---| | | Adds fractions with common denominators Adds decimals to one place (no carrying) | Subtracts fractions with common denominators | Multiplies
benchmark fractions
by a whole number | Divides fractions to simplify (2, 3, 5, 10) | | | Adds fractions up to and over 1, same denominator. Uses a bar or pie models | Subtracts fractions up to and over 1, with same denominator. Uses bar or pie models | Uses multiplication facts to create equivalent fractions Uses array or grid models to represent multiplication | Reduces fractions using strategic elimination (use a list of prime numbers 2, 3, 5, 7, and eliminate one at a time) Divides a whole number by a decimal value. | | (F) | Adds mixed
numbers and
decimals by
grouping whole
and fractional
parts | Subtracts mixed
numbers and
decimals by
grouping whole
and fractional
parts | Uses multiplication
to create common
denominators when
needed | Recognizes and converts decimals and fractions as two ways of showing the same value. (A fraction is a division, and a decimal is a division by a power of 10) | | J. | Adds fractions with unlike denominators Adds decimals accurately | Subtracts fractions
with unlike
denominators
Subtracts decimals
accurately | Multiplies fractions Multiplies decimal values accurately | Divides fractions by a whole number and vice versa Divides a fraction by another fraction | | E. C. | Fluently converts values to fractions, decimals and percents to add them efficiently | Uses subtraction
to solve problems
including decimals,
fractions and
percentages (ie.
tax, sale price) | Uses a ratio table (proportional reasoning) to solve rate and ratio problems. | Uses and solves
proportions (equates 2
fractions to find an
unknown value) | ### Dear teachers, This set of foundational numeracy trajectories may be helpful for the purposes of assessment and reporting. It includes a multigrade scope and sequence of number concepts and skills. Feel free to copy and edit as needed. The column entitled "Proficient" describes proficiency at the upper end of the grade band that is included in the table. For example, in the Foundational Numeracy Trajectory (K-2), the "Proficient" column describes the targets for the **end of grade 2**. A student in grade 1 who is already demonstrating that level of proficiency would be considered extending for grade 1. #### There are 6 tables: - K-2 (Foundational Numeracy) - 3-5 (Intermediate Years, Operational Fluency) - 5-7 (Middle Years, Number Concepts) - 7-9 (Algebra concepts) - Fact Fluency (K-9) - Fractions/Decimals/% (5+) How could teachers use this resource? | I | Selecting one row or column to include as a mini rubric on a quiz or assignment | |---|---| | | Building a set of lessons or a review guide, based on the previous grade-level descriptors | | | Identifying a student's current level of proficiency (especially when below or above current grade level) | | I | Using the next row or column to inform next steps for instruction and areas of growth | | ١ | (helpful for writing comments) | | | Use the proficiency table to identify and develop instructional materials that are | | | below/at/above grade-level (helps with differentiation) |